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Turbulent boundary-layer flow on a rotating disk 

By T-S. CHAM AND M. R. HEAD 
Cambridge University Engineering Department 

(Received 1 November 1968) 

Calculations have been made of the development of the turbulent boundary 
layer on a disk rotating in free air, using circumferential and radial momentum- 
integral equations and an auxiliary equation of entrainment. I n  the calculations, 
circumferential velocity profiles are represented by Thompson’s (1965) two- 
parameter family, while radial profiles are given by Mager’s (1952) quadratic 
expression. The circumferential component of skin friction follows from the use 
of Thompson’s profile family for the circumferential velocity. The entrainment, 
in dimensionless form, is assumed to be determined uniquely by the circum- 
ferential velocity profile in the same way as was proposed by Head (1958) for 
a two-dimensional turbulent boundary layer. 

Detailed measurements have been made of the development of the turbulent 
boundary layer on the rotating disk, and the calculations are found to be in 
excellent agreement with the results when a suitable adjustment is made to 
Head’s two-dimensional entrainment curve. 

1. Introduction 
One of the simplest types of three-dimensional boundary-layer flowt is that 

induced by a disk rotating in its own plane in a fluid at  rest at infinity. The fluid 
adjacent to the disk rotates with it and so is subjected to centrifugal forces 
which cause it to flow outwards, the disk thus acting like an inefficient 
centrifugal impeller. 

Several different r6gimes of flow exist, distinguished by values of the Reynolds 
number (Qr2/v)  based on radius and rotational velocity. For sufficiently low 
Reynolds numbers the flow is laminar and the equations for this case have been 
formulated by von Kkm&n (1921) and solved by Cochran (1934). Similar trans- 
formations to those used for axisymmetric stagnation point flow reduce the 
partial differential equations to a pair of ordinary differential equations, and the 
noteworthy features of the solution for stagnation point flow, invariance with 
radius of boundary-layer thickness and velocity distribution through the layer, 
reappear in the solution for the rotating disk. 

At a Reynolds number of approximately 1.85 x lo6 the laminar flow becomes 
unstable and breaks down into a series of discrete spiral vortices. This second 
equilibrium state becomes unstable in turn, breaking down to general turbu- 

t The term ‘three-dimensional ’ is used here in the sense which is customary for boundary 
layers (see, for example, Rosenhead 1963) although it is, of course, recognized that, in the 
present ewe, there is no variation in the azimuthal direction. 
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lence, the transition process being complete a t  a Reynolds number of 2.85 x 105. 
These experimental results were reported by Gregory, Stuart & Walker (1955) 
and are largely confirmed in the present work. Possibly because the instability 
of the basic laminar flow and (presumably) that of the equilibrium spiral flow 
that succeeds it is dynamic in origin, rather than viscous, the transition process 
appears to be very much more regular and reproducible than it is, for example, 
in the case of a flat plate in a uniform stream, and it is to be expected that the 
turbulent boundary-layer characteristics will be, to a close approximation, 
uniquely determined by the Reynolds number. 

The object of the present investigation has been to obtain reasonably 
complete and detailed measurements of the turbulent boundary-layer develop- 
ment, which can be used as a check of proposed methods of calculating the 
development of three-dimensional turbulent boundary layers. Both from the 
point of view of experiment and analysis, it represents a comparatively simple 
problem and one that, in a particular sense, is complementary to the 
attachment line flow described by Cumpsty & Head (1967); that flow is 
characterized by divergence of the external streamlines and zero cross-ff ow, 
whereas in the present case flow divergence is absent but cross-flow is an 
essential characteristic. 

The method used by Cumpsty & Head (1967) to calculate turbulent 
boundary-layer development on an infinite swept wing has been applied to the 
rotating disk flow and has been found to give excellent agreement with the 
measurements, but only if the entrainment is reduced to approximately two- 
thirds of the flat plate value. Thus the present results cannot be said to 
confirm the overall validity of the method. 

The only previous measurements of the turbulent boundary layer on a 
rotating disk known to the authors were reported by Gregory et al. (1955) and 
Stain (1961), and these were not comprehensive. Earlier experiments by 
Schmidt (1921), Kempf (1922) and Theodorsen & Regier (1944) were confined 
to the measurement of torque. Calculations for the turbulent boundary layer, 
again mainly directed at establishing the skin-friction drag and resisting torque, 
have been performed by von K&rm&n (1921), Goldstein (1935), Dorfman (1963) 
and Banks & Gadd (1962). Comparisons of their theories with the present 
measurements show that their overall predictions are far from satisfactory, 
especially at  the lower Reynolds numbers. 
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2. Boundary-layer equations 

be written as 

where a is the acceleration vector, o is the rotation vector of the co-ordinate 
system, v is the velocity vector, r is the position vector, p is the density of the 
fluid, p is the pressure, and v is the kinematic viscosity. 

The continuity equation for an incompressible flow is 

The Navier-Stokes equation in a uniformly rotating co-ordinate system may 

a+2w x v + o  x (o x r) = - (l/p)vp+ v ~ v ,  (1)  

v . v  = 0. (2) 
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A cylindrical co-ordinate system is chosen with the z-axis coinciding with the axis 
of rotation. Using a notation where 6 represents the distance measured along 
a circle of radius r,  y is the distance measured in the radial direction and < is 
the distance normal to the disk, it is easily seen that 

dc = rd8, dy = dr, d< = dz. 

By expanding equation ( 1) ,  introducing the boundary -layer approximations 
and taking mean values, the equations for a turbulent boundary layer, referred 
to the rotating co-ordinate system, are obtained as 

where u, v and w are components of the mean velocity in the circumferential, 
radial and axial directions respectively, R is the rate of rotation, and 71, 72 are 
the shear-stress components (including Reynolds stresses) in the circumferential 
and radial directions. 

The continuity equation becomes 

By ( 5 ) ,  and the fact that the pressure outside the boundary layer is uniform, 
terms involving differentials of p can be ignored. 

3. Momentum-integral equations 
By integrating equations (3) and (4) with respect to < from 0 to d,  where 

d 2 6, and noting that U = - Rr in a right-handed orthogonal co-ordinate 
system, where U is the velocity outside the boundary layer, the following 
integral equations are obtained: 

and 

where the signs of the 012 terms have been changed to allow for positive U and u, 
since the terms are actually negative with respect to the rotating right-handed 
co-ordinate system. The various boundary-layer thicknesses are defined by 

9-2 
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T~~ and 7 0 2  are the wall-shear-stress components in the circumferential and 
radial directions respectively. 

Equations (7)  and (8) can be shown to be a particular case of the general 
equations derived by Mager (1952) for a rotating co-ordinate system. 

An entrainment equation can be derived from continuity considerations. 
Take a boundary normal to the disk at radius r. The volume flow, &, rate across 
the boundary is given by 

Q = $" 2nrvdc = 2nrU6,*, 

and, noting that U is proportional to r ,  the rate of change of the flow is obtained 
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0 

as 

The additional fluid is supplied from outside the boundary layer, and dQ is the 
entrainment rate across the band width dr of the boundary layer at radius r. 
An entrainment coefficient, C,, can be defined for this case by 

Equation (9) will serve as an auxiliary equation if C, can be empirically related 
to other boundary-layer parameters. 

4. Additional assumptions and method of solution 
The equations to be satisfied are the streamwise and cross-flow momentum- 

integral equations (7) and (8) and the equation of entrainment (9). To obtain 
a solution to these equations, the following assumptions are made. 

(i) It is assumed that the streamwise velocity profiles correspond to 
Thompson's (1965) two-dimensional family, where 

the two-dimensional momentum thickness 0 being replaced by the streamwise 
momentum thickness ell in the momentum thickness Reynolds number 
R, (=  UO/v). The velocity profile shape factor H is given by &,*/Oll. 

(ii) The cross-flow velocity profile is assumed to correspond to the cross-flow 
model proposed by Mager (1952), i.e. 

v u  
-(1-@')Ztan/3, v =  U 

where /3 is the angle the limiting surface streamline makes with the main flow 
direction and is related to the wall shear stress components by 

tanp  = lim (:) = 702. 
5 - 4  701 

For the present calculation, 6 is defined as the value of 5 where u/U = 0.995. 
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(iii) The streamwise component of skin friction, T~,, is calculated using 
Thompson’s skin-friction relation Cf = Cf(Re, H ) ,  the two-dimensional mo- 
mentum thickness 8 being replaced by the streamwise momentum thickness ell. 
Thompson’s skin friction relationship is at least as reliable as alternative 
proposals and is, moreover, consistent with the choice of streamwise velocity 
profiles. 

(iv) CE is identified with the P function of Head (1958) for two-dimensional 
turbulent boundary layers and is an empirical function. The present extension 
to three dimensions assumes that the streamwise (i.e. circumferential) com- 
ponent behaves as a two-dimensional flow with regard to entrainment and that 
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FIGURE 1. Entrainment functions. ---, Head (1958) ; -, present calculation. 

the cross-flow component makes a negligible contribution. Following Head’s 
assumption for two-dimensional flow, we therefore write 

cE = CE(H6-8f)* 

Values of which is given by (iS-iS?)/O,,, are related to corresponding 
values of H and Re11 by Thompson’s profile family, in which velocity profiles 
are specified as functions of H and Re. 

It is found that for best overall agreement between experiment and theory, 
appreciably lower entrainment than that proposed by Head for a two- 
dimensional flow must be used, as indicated in figure 1. This lower entrainment 
rate is confirmed later by direct measurements (see 0 6).  

The technique of solution used is essentially a simultaneous solution of 
equations (7),  (8) and (9), and only one initial condition is required. The aim is 
to solve for H ,  O,, and tan#? for the full extent of the turbulent boundary layer 
on the disk, with a starting value of 8,, at a certain radius. 

Since the cross-flow is specified by the streamwise flow and the surface yaw 
angle, all the cross-flow thicknesses in equations (7),  (8) and (9) are more con- 
veniently expressed as functions of t anp  and &. For example, 8: = A6,, tan#?, 
where A is a coefficient dependent on H and RBI,. 
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At the starting point, as 0,1 is known, rol and tan/? are solved simultaneously 
from equations (7) and (8). The derivatives in the radial (i.e. cross-flow) direc- 
tion in both the equations are eliminated by equation (9). It must be noted that 
only tan/? is obtained explicitly, H being deduced from the skin friction relation 
C,, = Cf,(H, Roil), where Cfl = ro1/$pU2. When the first step is completed, by 
equation (9), the radial gradient of streamwise momentum thickness ell can be 
determined. This leads to a new 8,, value at  a new radius, and the whole calcula- 
tion is repeated. In  this manner, the calculation proceeds by finite steps from 
streamline to streamline, the steps being sufficiently small to ensure an accurate 
solution. 

The computer calculation, which was carried out on the Cambridge Titan 
computer may be outlined as follows. 

As a first approximation, the gradient of ell in the radial direction was 
assumed to be very much greater than the corresponding gradients of H and 
tan /3 and terms involving derivatives of these quantities were therefore 
neglected. H ,  Re11 and tanp  were thus obtained for the range of radius of 
interest. From this initial calculation, the derivatives which had been neglected 
were estimated and included in the calculation for the next approximation. 
This procedure was repeated until two successive solutions were effectively 
identical. The starting value of ell for the turbulent boundary layer was taken 
from measurements by Gregory et al. (1955) and its accuracy is confirmed by 
the present experimental results. 

The solution showed that H ,  tan/? and Cf, decrease slowly with respect to 
radius whereas 011 increases rapidly. Thus, the initial solution, where the 
derivatives of H and tan/? were neglected in comparison with those of ell, 
differed from the final solution by not more than 5 yo. 

5. Apparatus and experimental techniques 
The basic experimental apparatus consisted of a steel disk 3ft. in diameter 

and &in. thick which was flat to +0*0015in. It was supported on a thrust 
bearing, mounted on a rigid steel frame. The vertical spindle was aligned by two 
ball bearings 2 ft. 3in. apart and was driven by a 2 hp ax.  motor. By means of a 
Variac control, the rotational speed could be set for any value up to 1900 rev/min. 
The speed was continuously checked by a stroboscope. Very little vibration was 
observed except near a resonant frequency at approximately 1300 rev/min. 

Boundary-layer measurements were made using stationary probes which 
could be traversed both radially and vertically as well as rotated in yaw. Vertical 
movement was indicated on a dial guage measuring in thousandths of an inch and 
the angle in yaw could be read on a Vernier scale to 5 minutes of arc, which was 
considerably greater than the accuracy with which flow angles could actually be 
determined . 

Two different probes were used. The first consisted of three flattened Pitots 
soldered side by side so as to form a Conrad tube with an overall width of approxi- 
mately 0.10 in. The flattened tips had an overall depth of 0.010in. with openings 
0.005 in. deep. The two outer tubes were connected across a sensitive manometer, 
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and yaw was indicated by the position for null reading. The centre tube was 
connected to an alcohol manometer, the low pressure side of which was left open 
to atmosphere. It was assumed that the static pressure throughout was equal to 
room pressure. Measurements of flow direction made using this probe as a yaw- 

Traversing 
gear 

or 
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J 

i 
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FIGURE 2. Schematic diagram of the experimental arrangement. 

meter were never entirely satisfactory and, later, measurements of yaw were 
made using a single hot wire. This was rotated to two positions, about 90" apart, 
which gave the same voltage reading. The direction of flow was taken as the mean 
of these two angular positions. The uncertainty in the measurements using this 
method was probably f 1' in yaw. Yaw angles measured in this way were then 
used in conjunction with the readings of total pressure already obtained by the 
three-hole probe to  obtain velocity profiles in tangentia1 and radial directions. 
The general arrangement of the apparatus is shown in figure 2. 

To overcome the difficulty in fixing accurately the direction corresponding to 
the zero reading of the yawmeters, they were calibrated in situ. The air stream 
was provided by blowing through a 2 in. diameter brass pipe, about 2 ft. long, 
which was aligned carefully at  right angles to the radial travel of the probes 
provided by the traversing mechanism. The inlet end of the pipe was fitted with 
a reducer leading from a 4in. diameter pipe in which honeycombs were fitted. 
Air was supplied by a small centrifugal fan whose flow rate could be controlled. 

The direction of the stream in the brass pipe was determined consistent to 
f 0.5" by the hot-wire technique for a wide range of air speeds. It was also 
repeatable for a different radial position of the probe. The alignment of the 
pipe was true to 0.1". 

A check on the calibrations and the behaviour of the probes was made by 
traversing the boundary layer in the laminar region. This was particularly useful 
in giving a reasonable estimate of the position of the effective centre of the 
flattened pitot. From the comparisons between the measurements and laminar 



136 T-S. Cham and M .  R. Head 

I 2 3 4 

5;l(n/v) 
FIGURE 3. Velocity magnitude vT in the laminar boundary layer. -, theory; 

0, experiment at 515 revlmin, radius 7.5 in., R, = 1.29 x 105. 

FIGURE 4. Flow direction in the laminar boundary layer. -, theory; 0, experiment 
at 515 rev/min, radius 7.5 in., R, = 1.29 x los. 

6. Experimental measurements 
Traverses of the boundary layer were made at  three rotational speeds (515, 

1000 and 1550rev/min) and at  three radii on the disk for each speed. The range 
of R, ( = IRr2/u) covered was from 3 x lo5 to 2 x lo6. A check was made to ensure 
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FIUURE 5. Development of the shape factor for circumferential velocity profiles. A, present 
calculation using the entrainment method; B, von K&rrntin (1921) and Banks & Gadd (1962) ; 
C, Goldstein (1935) : ---, calculation with isotropic eddy viscosity; a, experiments 
of Gregory et al. (1955). Present experiments: x , 515 rev/min; 0, 1000 rev/min; A ,  
1550 revlmin. 
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FIGURE 6. Development of the circumferential momentum thickness with Reynolds 
number. A, present calculation; B, von KArm&n (1921); C, Banks & Gadd (1962); D, 
Goldstein (1935); E, Dorfman (1963); s, experiments of Gregory et al. (1955). Present 
experiments: x , 515 rev/min; 0, 1000 rev/min; A, 1550 rev/min. 
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that the positions where the readinga were taken were within the turbulent 
r6gime by listening for the turbulent roar through a stethoscope connected to a 
hand-held Pitot. The extent of the turbulent region was also confirmed visually 
by the use of paraffin evaporating from a coating of china-clay. 

Orifice-plate flow meter upstream 

Disk 34 in. dia. - 
FIUURE 7. Arrangement for the direct measurement of entrainment. 

FIGURE 8. Pressure difference as a function of flow rate for various clearances: x , 8 in.; 
0, 1 in.; A ,  la in. Drum radius 17 in., disk speed 1200 rev/min, R, = 1.543 x lo8. 

The circumferential and cross-flow components of velocity were deduced by 
taking the cosine and sine functions of the yaw angle with the total velocity. As 
a result of using a sine function of small angles, the form of cross-flow profile was 
very sensitive to the accuracy of the angles obtained. This was not the case for 
the circumferential component. 

Experimental mean velocity profiles for the rotational speed of 1550 rev/min 
are shown in figures 11 and 12. There is comparatively little experimental 
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of inflexion and agree fairly well with the form of cross-flow suggested by Mager 
(1952). It is interesting to note that the circumferential velocity profiles corre- 
spond very closely to Thompson’s velocity profiles for two-dimensional flow. 

The shape factor H ,  and Rsll based on the streamwise component of the 
velocity, were evaluated and their variations with R, are shown in figures 5 and 6. 
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scatter, except at the outer edge of the boundary layer. The cross-flow profiles 
show a slight variation in shape from the ‘rounded peak’ profiles at higher R, to 
the ‘sharp-peak’ ones near to transition. All the cross-flow profiles have a point 

FIQTTRE 10. Development of the circumferential skin-friction component. - A, present 
calculation using the entrainment method; - B, von K & m h  (1921) ; ---, Gold- 
stein (1935); ----- , calculation, with isotropic eddy viscosity; . . ($ . . , Theodorsen & Regier 
(1944). Results taken from Clauser plots of the present measurements: x , 515 revlmin; 
0, 1000 rev/min; A, 1550 rev/&. 
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Entrainment measurements 

Direct measurements of the entrainment of external fluid into the boundary 
layer were made employing essentially the same technique as that of Case (1966). 
The details are given in figure 7 .  The principle consists in blowing air into the 
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FIGURE 11. Circumferential velocity profiles at 1550 rev/& ; -, theory ; 0, experiment. 
Curve A, r = 17 in., H = 1-29, Roll = 6000; curve B, T = 12 in., H = 1-32, Re11 = 3350; 
curv0 C, r = 7.5 in., H = 1.43, Roll = 1278. 

drum, which is just clear of the boundary layer, at  such a rate as to balance the 
intake of air into the boundary layer. When this condition is satisfied, the static 
pressure in the chamber is atmospheric. Two different sizes of drum (12 in. radius 
and 17 in. radius) were used, the flow being smoothed by honeycombs and screens 
as well as a baffle at  entry. 

The test method consisted of using either of the two drums and rotating the 
disk at a series of speeds, for each of which the quantity of air blown into the 
chamber was varied and the static pressure in the drum recorded. This procedure 
was repeated for different clearances between the drum and the boundary layer. 
A typical result is shown in figure 8, and it will be seen that the flow rate for 
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atmospheric pressure in the drum is independent of the gap between the drum 
and the surface of the disk, provided the lower edge of the drum is clear of the 
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FIUTJRE 12. Cross-flow velocity profiles at 1550rev/min. -, theory; 0, experiment. 
Curve A, r = 17in., R, = 2 x  loe; curve B, r = 12 in., R, = 9 . 9 5 ~  105; curve C, 
T = 7-5 in., R, = 3.38 x 106. 

The entrainment was also deduced from the yawmeter and the total pressure 
traverses through the boundary layer on the disk in free air, the integrated cross- 
flow component of the velocity distribution through the layer evidently repre- 
senting the entrainment up to the radius at  which the traverses were performed. 

The results of the measurements, both direct and indirect, are shown in 
figure 9, and it is seen that they show relatively little scatter and are in broad 
agreement with those of Case (1966) though much more consistent. It may be 
noted that they are also in close agreement with the theoretical prediction based 
on the (CE,Ha-81) entrainment curve used in the calculations (figure 1) and 
Mager's cross-flow model. This may also be deduced from the agreement of the 
cross-flow velocity profiles shown in figure 12. 
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Circumferential component of wall shear stress 

In  order to check whether the streamwise component of a three-dimensional 
turbulent boundary layer obeys the logarithmic law of the wall, the streamwise 
profile (figure 11) was plotted in the form first suggested by Clauser (1954). 
Typical distributions are shown in figure 13. They conform to the normal two- 
dimensional shape with three distinct regions which are the sub-layer, the wall 
region and the wake region. For each of the velocity profiles, as there is a fairly 
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FIGURE 13. Clauser plot of circumferential velocity profiles at 1000 rev/min. 
X ,  r = 9 in.; 0, r = 13 in.; A, r = 17 in. 

extensive linear portion oriented at  more or less the required slope, it is possible 
to deduce values of C,,, assuming that the same law of the wall holds for the 
streamwise velocity component as for a two-dimensional turbulent boundary 
layer. The experimental values of C', obtained in this way are shown in figure 10, 
and it is seen that the values are realistic. 

Surface streamlines 

As it was difficult to deduce accurately the direction of the surface streamlines 
from the velocity measurements, a visual method was attempted using the azo- 
benzene sublimation technique. Artificial roughnesses of height varying from 
0-003in. to 042in. were glued on the surface of the disk at a radius of 13.5in. 
The disk was rotated at lOOOrev/min for about one hour after the azo-benzene 
was sprayed on. When the disk was stopped, faint lines of about 0.4in. long could 
be seen on the surface extending from the roughnesses in the direction of flow 
relative to the disk. For a height of roughness element less than about 0.005 in., 
the trace was too faint for its direction to be accurately measured. All the other 
roughnesses showed a flow direction of between 10.5' and 12' to the circum- 
ferential direction. 

However, from the estimated value of U,, it  appears that, in fact, the rough- 
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nesses that gave useful results all protruded through the laminar sub-layer and 
the measured angles are therefore unlikely to represent the true limiting values 
at  the surface. A height of 0.005in. is just outside the sub-layer, if this is based 
on a value of U,c;lv = 8. 

7. Calculation using eddy viscosity 
An exploratory attempt was made to calculate the turbulent boundary layer 

by using the concept of locally isotropic eddy viscosity in place of the empirical 
Mager cross-flow profile. Because of the complexity of the calculation procedure 
and because the initial interest was in the cross-flow velocity profile, no direct 
calculations of boundary-layer development were made. Instead, the radial 
developments of circumferential momentum thickness already calculated were 
used, along with present hypothesis, to calculate cross-flow velocity profiles and 
the corresponding values of H for the circumferential profiles, which were again 
represented by Thompson’s profile family. Further details of the calculation 
procedure can be obtained from Cham (1968). 

The results of the calculations of cross-flow profiles are shown in figures 14 and 
17. All show a slight overestimation of the cross-flow velocities, with the greatest 
discrepancy at  the lower Reynolds numbers. Nevertheless, the general form of 
the calculated cross-flow profiles is plausible, and corresponds in essential 
features with both Mager’s cross-flow model and the experimental profiles. On 
the whole, however, the results appear to be in no way superior to those obtained 
by the simpler procedure. 

8. Comparison of theories with experiment 
Although there is no a priori analytical evidence that the turbulent boundary 

layer on a rotating disk can be treated as a function of the single variable R,, the 
experimental results positively indicated this to be the case. This, of course, is 
only possible if the Reynolds number at  transition does not vary with rotational 
speed. 

Referring to figures 5 and 6, it  is clear that the calculations based on entrain- 
ment predict the Hand Roll developments of the turbulent boundary layer with 
considerable accuracy. Especially significant is the H value near transition com- 
pared to those at  higher values of R,. The calculation based on isotropic eddy 
viscosity, as outlined in $ 7 ,  gives a higher H throughout but nevertheless shows 
the same trend. Von KBrmitn, and Banks & Gadd provide a reasonably good pre- 
diction of the growth of streamwise momentum thickness but their theories give 
a poor description of the velocity profile shape factor for the lower Reynolds 
numbers. Evidently any theory that is based essentially on turbulent boundary- 
layer properties appropriate to high Reynolds numbers would not expect to give 
good agreement over the whole range considered here. 

The skin friction values predicted by all the theories are in reasonable agree- 
ment as shown in figure 10. It is impossible to rate the theories by this test since 
there are no measurements of the required accuracy. As shown in the plots given 
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by Goldstein (1935) and Dorfman (1963), the experimental scatter is as great as 
the differences between the theories. 

As pointed out earlier, the measured streamwise velocity profiles are repre- 
sented with considerable accuracy by Thompson’s two-dimensional profile 
family. The experimental cross-flow profiles, as shown in figure 12, agree reason- 
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FIGURE 14. Comparison of cross-flow profiles. (a) R, = 3.6 x 105; ( b )  R, = 2 x 106. 
0, experiment ; -, present calculation using the entrainment method; --- , cal- 
culationwithisotropic eddyviscosity; -. -, vonK&rm&nI( 1921);--. . -, Goldstein (1935) ; 
......, Banks & Gadd (1962). 

ably closely with Mager’s cross-flow model, showing that this is also applicable 
with rotating surfaces. The cross-flow profiles given by other theories are also 
shown in figure 14, one at the highest and one at the lowest Reynolds number 
measured. The discrepancies are seen to be greater at  the lower Reynolds number. 
Undoubtedly, the theory based on entrainment and Mager’s quadratic expression 
for the cross-flow gives the best overall agreement. Polar plots of the velocities at  
the two extremes of Reynolds number are shown in figure 15 and correspond 
reasonably closely to the triangular model suggested by Johnston (1960). 
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Referring to figure 16, it is seen that there are great differences between the 
different theories in predicting the angle of the surface streamline. Present results 
and the calculations by Banks & Gadd (1962) give values within the range indi- 
cated by the flow visualization experiment. However, as pointed out earlier, the 
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experimental results do not give the true values at  the surface but some value at  
the edge of the sub-layer. As shown by Cham (1968)) it seems likely that there 
should be an appreciable difference between the two values. No conclusive 
comparisons can therefore be made between the different theories. 
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(b) R, = 1-29 x lo6. --, calculation using isotropic eddy viscosity; 0, experiment. 

It is seen that the entrainment method, which gives fairly good predictions for 
two-dimensional turbulent boundary layers, can be extended to three-dimen- 
sional flow, but it is also apparent that the entrainment rate is affected by the 
three dimensionality of the problem. Although C, still varies in the same way 
with Hapa* as in two-dimensional flow, there is a reduction in actual magnitude 
of about 30 %. Provided this reduction in entrainment is incorporated, the 
present calculation gives a good overall prediction of the development of the 
turbulent boundary layer on a rotating disk. 

9. Conclusions 
The use of an entrainment equation together with the circumferential and 

radial momentum integral equations enable the development of the turbulent 
boundary layer over a disk rotating in free air to be simply calculated. The 
technique of solution is essentially a simultaneous solution of the equations for 
each radius. 

Based on the assumption that the entrainment depends only on the streamwise 
component of the velocity profile, a decrease of about 30 yo in the entrainment 
rate proposed by Head (1958) for two-dimensional boundary layers is necessary 
in order to obtain the best overall agreement between theory and experiment. 
This reduction is confirmed experimentally by direct measurements of entrain- 
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ment. When this allowance is made, the shape factor H ,  the Reynolds number 
Roll and the predictions of cross-flow are in virtually perfect agreement with the 
experimental values. The circumferential- and radial-flow velocity profiles are 
well represented by Thompson’s two-parameter family and Mager’s cross-flow 
expression respectively. The present calculations are in significantly better agree- 
ment with experiment than any previous theories for the rotating disk. 

From the experimental and theoretical results, it is evident that the turbulent 
boundary layer on a rotating disk can be treated as a function of one variable R,., 
the Reynolds number based on the radius. 
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